
CS267 L2 Memory Hierarchies.1 Lucas Sp 2000

CS 267 Applications of Parallel Computers

Lecture 2:
Memory Hierarchies and Optimizing Matrix Multiplication

Bob Lucas

http://www.nersc.gov/~dhbailey/cs267

CS267 L2 Memory Hierarchies.2 Lucas Sp 2000

Millennium Accounts

° To get Millenium accounts, students need to get
EECS Instructional Accounts

° Instructions are outlined on the class resource page

° Please mail Jason at ejr@cs.berkeley.edu once
you’ve requested an account and returned the
account form.

° Another recommended reference:

“Industrial Strength Parallel Computing”

Edited by Alice E. Koniges

CS267 L2 Memory Hierarchies.3 Lucas Sp 2000

Outline

° Understanding Caches

° Optimizing Matrix Multiplication

CS267 L2 Memory Hierarchies.4 Lucas Sp 2000

Idealized Uniprocessor Model

° Processor can name objects in a simple, flat address space
• these represent integers, floats, pointers, structures, arrays, etc.

• exist in the program stack, static region, or heap

° Operations include
• read and write from memory (given an address/pointer)

• arithmetic and other logical operations

° Order specified by program
• read returns the most recently written data

• compiler and architecture may reorder operations to optimize
performance, as long as the programmer cannot see any reordering

° Performance
• each operation has roughly the same cost (read, write, multiply, etc.)

CS267 L2 Memory Hierarchies.5 Lucas Sp 2000

Uniprocessor Reality

° Modern processors use a variety of techniques for
performance

• caches

- small amount of fast memory where values are “cached”
in hope of reusing recently used or nearby data

- different memory ops can have very different costs

• parallelism

- superscalar processors have multiple “functional units”
that can run in parallel

- different orders, instruction mixes have different costs

• pipelining

- a form of parallelism, like an assembly line in a factory

° Why is this your problem?
- In theory, compilers understand all of this and can

optimize your program; in practice they don’t.

CS267 L2 Memory Hierarchies.6 Lucas Sp 2000

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

CS267 L2 Memory Hierarchies.7 Lucas Sp 2000

Memory Hierarchy

° Most programs have a high degree of locality in their accesses
• spatial locality: accessing things nearby previous accesses

• temporal locality: reusing an item that was previously accessed

° Memory Hierarchy tries to exploit locality

on-chip
cacheregisters

datapath

control

processor

Second
level

cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Tape)

Speed (ns): 1s 10s 100s 10s ms 10s sec

Size (bytes): 100s Ks Ms Gs Ts

CS267 L2 Memory Hierarchies.8 Lucas Sp 2000

Cache Basics

X000 X001

X010 X011

X100 X101

X110 X111

° Cache hit: a memory access that is found in the cache --
cheap

° Cache miss: a memory access that is not in the cache -
expensive, because we need to get the data from elsewhere

° Consider a tiny cache (for illustration only)

° Cache line length: number of bytes loaded together in one
entry

° Direct mapped: only one address (line) in a given range in
cache

° Associative: 2 or more lines with different addresses exist

line offsettag

Address

CS267 L2 Memory Hierarchies.9 Lucas Sp 2000

Experimental Study of Memory

° Microbenchmark for memory system performance

 time the following program for each size(A) and stride s

 (repeat to obtain confidence and mitigate timer resolution)

 for array A of size from 4KB to 8MB by 2x

 for stride s from 8 Bytes (1 word) to size(A)/2 by 2x

 for i from 0 to size by s

 load A[i] from memory (8 Bytes)

CS267 L2 Memory Hierarchies.10 Lucas Sp 2000

Observing a Memory Hierarchy

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

T
im

e
 (

n
a
n
o
se

co
n
d
s)

Stride (bytes)

DEC Workstation Memory Hierarchy

8 M
4 M
2 M
1 M

512 K
256 K
128 K

64 K
32 K
16 K

8 K
4 K

L2: 512 K, 52 ns (8
cycles)

L1: 8K, 6.7 ns (1
cycle)

Mem: 300 ns (45
cycles)

Dec Alpha, 21064, 150 MHz clock

32 byte cache
line

8 K pages

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

CS267 L2 Memory Hierarchies.11 Lucas Sp 2000

Lessons

° The actual performance of a simple program can be
a complicated function of the architecture

° Slight changes in the architecture or program
change the performance significantly

° Since we want to write fast programs, we must take
the architecture into account, even on
uniprocessors

° Since the actual performance is so complicated, we
need simple models to help us design efficient
algorithms

° We will illustrate with a common technique for
improving cache performance, called blocking

CS267 L2 Memory Hierarchies.12 Lucas Sp 2000

Optimizing Matrix Addition for Caches

° Dimension A(n,n), B(n,n), C(n,n)

° A, B, C stored by column (as in Fortran)

° Algorithm 1:
• for i=1:n, for j=1:n, A(i,j) = B(i,j) + C(i,j)

° Algorithm 2:
• for j=1:n, for i=1:n, A(i,j) = B(i,j) + C(i,j)

° What is “memory access pattern” for Algs 1 and 2?

° Which is faster?

° What if A, B, C stored by row (as in C)?

CS267 L2 Memory Hierarchies.13 Lucas Sp 2000

 Using a Simpler Model of Memory to Optimize

° Assume just 2 levels in the hierarchy, fast and slow

° All data initially in slow memory
• m = number of memory elements (words) moved between fast

and slow memory

• tm = time per slow memory operation

• f = number of arithmetic operations

• tf = time per arithmetic operation < tm

• q = f/m average number of flops per slow element access

° Minimum possible Time = f*tf, when all data in fast
memory

° Actual Time = f*tf + m*tm = f*tf*(1 + (tm/tf)*(1/q))

° Larger q means Time closer to minimum f*tf

CS267 L2 Memory Hierarchies.14 Lucas Sp 2000

Simple example using memory model

s = 0

for i = 1, n

 s = s + h(X[i])

° Assume tf=1 Mflop/s on fast memory

° Assume moving data is tm = 10

° Assume h takes q flops

° Assume array X is in slow memory

° To see results of changing q, consider simple
computation

° So m = n and f = q*n

° Time = read X + compute = 10*n + q*n

° Mflop/s = f/t = q/(10 + q)

° As q increases, this approaches the “peak” speed
of 1 Mflop/s

CS267 L2 Memory Hierarchies.15 Lucas Sp 2000

Simple Example (continued)

° Algorithm 1
 s1 = 0; s2 = 0

 for j = 1 to n

 s1 = s1+h1(X(j))

 s2 = s2 + h2(X(j))

° Algorithm 2

s1 = 0; s2 = 0

for j = 1 to n

 s1 = s1 + h1(X(j))

for j = 1 to n

 s2 = s2 + h2(X(j))

° Which is faster?

CS267 L2 Memory Hierarchies.16 Lucas Sp 2000

Optimizing Matrix Multiply for Caches

° Several techniques for making this faster on modern
processors

• heavily studied

° Some optimizations done automatically by compiler,
but can do much better

° In general, you should use optimized libraries (often
supplied by vendor) for this and other very common
linear algebra operations

• BLAS = Basic Linear Algebra Subroutines

° Other algorithms you may want are not going to be
supplied by vendor, so need to know these
techniques

CS267 L2 Memory Hierarchies.17 Lucas Sp 2000

Warm up: Matrix-vector multiplication y = y + A*x

for i = 1:n

for j = 1:n

y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

CS267 L2 Memory Hierarchies.18 Lucas Sp 2000

Warm up: Matrix-vector multiplication y = y + A*x

{read x(1:n) into fast memory}

{read y(1:n) into fast memory}

for i = 1:n

 {read row i of A into fast memory}

 for j = 1:n

 y(i) = y(i) + A(i,j)*x(j)

{write y(1:n) back to slow memory}

° m = number of slow memory refs = 3*n + n^2
° f = number of arithmetic operations = 2*n^2
° q = f/m ~= 2
° Matrix-vector multiplication limited by slow memory speed

CS267 L2 Memory Hierarchies.19 Lucas Sp 2000

Matrix Multiply C=C+A*B

for i = 1 to n

 for j = 1 to n

for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

CS267 L2 Memory Hierarchies.20 Lucas Sp 2000

Matrix Multiply C=C+A*B(unblocked, or untiled)

for i = 1 to n

 {read row i of A into fast memory}

 for j = 1 to n

 {read C(i,j) into fast memory}

 {read column j of B into fast memory}

 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

 {write C(i,j) back to slow memory}

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

CS267 L2 Memory Hierarchies.21 Lucas Sp 2000

Matrix Multiply (unblocked, or untiled)

Number of slow memory references on unblocked matrix
multiply

m = n^3 read each column of B n times

 + n^2 read each column of A once for each i

 + 2*n^2 read and write each element of C once

 = n^3 + 3*n^2

So q = f/m = (2*n^3)/(n^3 + 3*n^2)

 ~= 2 for large n, no improvement over matrix-vector mult

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

CS267 L2 Memory Hierarchies.22 Lucas Sp 2000

Matrix Multiply (blocked, or tiled)

Consider A,B,C to be N by N matrices of b by b subblocks where b=n/N is
called the blocksize

for i = 1 to N

 for j = 1 to N

 {read block C(i,j) into fast memory}

 for k = 1 to N

 {read block A(i,k) into fast memory}

 {read block B(k,j) into fast memory}

 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

 {write block C(i,j) back to slow memory}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)

CS267 L2 Memory Hierarchies.23 Lucas Sp 2000

Matrix Multiply (blocked or tiled)

Why is this algorithm correct?

Number of slow memory references on blocked matrix multiply

m = N*n^2 read each block of B N^3 times (N^3 * n/N * n/N)

 + N*n^2 read each block of A N^3 times

 + 2*n^2 read and write each block of C once

 = (2*N + 2)*n^2

So q = f/m = 2*n^3 / ((2*N + 2)*n^2)

 ~= n/N = b for large n

So we can improve performance by increasing the blocksize b

Can be much faster than matrix-vector multiplty (q=2)

Limit: All three blocks from A,B,C must fit in fast memory (cache), so we

 cannot make these blocks arbitrarily large: 3*b^2 <= M, so q ~= b <= sqrt(M/3)

Theorem (Hong, Kung, 1981): Any reorganization of this algorithm

(that uses only associativity) is limited to q =O(sqrt(M))

CS267 L2 Memory Hierarchies.24 Lucas Sp 2000

More on BLAS (Basic Linear Algebra Subroutines)

° Industry standard interface(evolving)

° Vendors, others supply optimized implementations

° History
• BLAS1 (1970s):

- vector operations: dot product, saxpy (y=αααα *x+y), etc

- m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)

- matrix-vector operations: matrix vector multiply, etc

- m=n^2, f=2*n^2, q~2, less overhead

- somewhat faster than BLAS1

• BLAS3 (late 1980s)

- matrix-matrix operations: matrix matrix multiply, etc

- m >= 4n^2, f=O(n^3), so q can possibly be as large as n, so BLAS3
is potentially much faster than BLAS2

° Good algorithms used BLAS3 when possible (LAPACK)

° www.netlib.org/blas, www.netlib.org/lapack

CS267 L2 Memory Hierarchies.25 Lucas Sp 2000

BLAS speeds on an IBM RS6000/590

BLAS 3

BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)

Peak speed = 266 Mflops

Peak

CS267 L2 Memory Hierarchies.26 Lucas Sp 2000

Optimizing in practice

° Tiling for registers
• loop unrolling, use of named “register” variables

° Tiling for multiple levels of cache

° Exploiting fine-grained parallelism within the
processor

• super scalar

• pipelining

° Complicated compiler interactions

° Hard to do by hand (but you’ll try)

° Automatic optimization an active research area
• PHIPAC: www.icsi.berkeley.edu/~bilmes/phipac

• www.cs.berkeley.edu/~iyer/asci_slides.ps

• ATLAS: www.netlib.org/atlas/index.html

CS267 L2 Memory Hierarchies.27 Lucas Sp 2000

PHIPAC: Portable High Performance ANSI C

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

CS267 L2 Memory Hierarchies.28 Lucas Sp 2000

Strassen’s Matrix Multiply

° The traditional algorithm (with or without tiling) has O(n^3)
flops

° Strassen discovered an algorithm with asymptotically lower
flops

• O(n^2.81)

° Consider a 2x2 matrix multiply, normally 8 multiplies
Let M = [m11 m12] = [a11 a12] * [b11 b12]

 [m21 m22] [a21 a22] [b21 b22]

Let p1 = (a12 - a22) * (b21 + b22) p5 = a11 * (b12 - b22)

 p2 = (a11 + a22) * (b11 + b22) p6 = a22 * (b21 - b11)

 p3 = (a11 - a21) * (b11 + b12) p7 = (a21 + a22) * b11

 p4 = (a11 + a12) * b22

Then m11 = p1 + p2 - p4 + p6

 m12 = p4 + p5

 m21 = p6 + p7

 m22 = p2 - p3 + p5 - p7

Extends to nxn by divide&conquer

CS267 L2 Memory Hierarchies.29 Lucas Sp 2000

Strassen (continued)

T(n) = Cost of multiplying nxn
matrices

 = 7*T(n/2) + 18*(n/2)^2
 = O(n^log_2 7)
 = O(n^2.81)

° Why does Hong/Kung theorem not apply?
° Available in several libraries
° Up to several time faster if n large enough (100s)
° Needs more memory than standard algorithm
° Can be less accurate because of roundoff error
° Current world’s record is O(n^2.376..)

CS267 L2 Memory Hierarchies.30 Lucas Sp 2000

Locality in Other Algorithms

° The performance of any algorithm is limited by q

° In matrix multiply, we increase q by changing
computation order

• increased temporal locality

° For other algorithms and data structures, even hand-
transformations are still an open problem

• sparse matrices (reordering, blocking)

• trees (B-Trees are for the disk level of the hierarchy)

• linked lists (some work done here)

CS267 L2 Memory Hierarchies.31 Lucas Sp 2000

Summary

° Performance programming on uniprocessors requires
• understanding of memory system

- levels, costs, sizes

• understanding of fine-grained parallelism in processor to produce good
instruction mix

° Blocking (tiling) is a basic approach that can be applied to
many matrix algorithms

° Applies to uniprocessors and parallel processors
• The technique works for any architecture, but choosing the blocksize b

and other details depends on the architecture

° Similar techniques are possible on other data structures

° You will get to try this in Assignment 2 (see the class
homepage)

